Prozessoptimierung am tpt Gold-Bonder

Konstantin Schneider

31. Jan 2022

Contents

1.	Einleitung										
2.	Probenherstellung	4									
I.	Gatedurchbrüche	5									
3.	Messaufbau										
	3.1. Keysight B1500A (100V)	5									
	3.2. Keithley Sourcemeter 2450 (200V)	6									
4.	Screening Experiment	7									
	4.1. Versuchsplanung	7									
	4.2. Durchführung	9									
	4.3. Auswertung	10									
5.	Test der optimalen Parameterwerte	14									
	5.1. Cr/Au	16									
	5.2. Cr/Pd/Au	17									
6.	Fazit	17									
II.	Pull-Test	18									
7.	Pulltester	18									
8.	Optimierung der Haltekraft	21									
	8.1. Versuchsplanung	21									
	8.2. Durchführung	22									
	8.3. Auswertung	22									
9.	Fazit	26									

1. Einleitung

Die neuen Wire-Bonder der Firma *tpt* führen regelmäßig zu einer Beschädigung der isolierenden SiO₂-Schicht von Proben auf Si/SiO₂. Durch Anlegen einer Spannung an das Backgate kann es durch diese Beschädigung zu einem Durchschlag Backgate-Spannung (Gate-Durchbruch) kommen. Der Einfluss des Bondens mit dem *tpt* Aluminium-Bonder auf die Wahrscheinlichkeit eines Gate-Durchbruchs wurde in meiner Bachelorarbeit untersucht. Für eine genaue Untersuchung des Verhaltens am *tpt* Gold-Bonder blieb jedoch keine Zeit.

Figure 1: Gate-Druchbruch an einem Al/Au-Bond aus meiner Bachelorarbeit (tpt Al-Bonder).

Ziel dieser Arbeit ist es daher festzustellen, ob das Bonden mit dem *tpt* Gold-Bonder zu Gate-Durchbrüchen führen kann. Dabei ist der Einfluss der wesentlichen Bondparameter auf die Wahrscheinlichkeit eines Gate-Durchbruchs von besonderem Interesse.
 Table 1: CSAR Spin-Coating Parameter.

Schritt	RPM	Ramp	Dauer	Tropfen
1	-/-	-/-	-/-	1-2
2	4000	800	5	-/-
3	4000	-/-	20	1-2
4	6000	800	30	-/-

2. Probenherstellung

Um den Einfluss des Wire-Bondens am tpt Gold-Bonder auf Gate-Durchbrüche zu untersuchen, wurden Chips mit Bondpads aus Gold/Chrom versehen. Hierfür wurden Chips aus Si/SiO₂ verwendet. Diese wurden gereinigt, belackt und mittels Elektronenstrahllithografie "beschrieben". Anschließend wurden Bondpads aus Chrom/Gold aufgedampft. Die einzelnen Schritte werden im Folgenden genauer erläutert.

2.0.0.1. Reinigung Die Proben wurden zunächst wie folgt chemisch gereinigt:

- Schritt 1: 30s Aceton in Ultraschallbad.
- Schritt 2: In Aceton schwenken.
- Schritt 3: Mit Isopropanol spülen.
- Schritt 4: Mit Stickstoff trocknen.

Um organische Verunreinigungen zu entfernen, wurden die Proben im Anschluss zusätzlich für fünf Minuten bei 57% Leistung im (alten) Plasmaverascher gereinigt.

2.0.0.1.1. Spin-Coating Für die Lithographie wurde der positive e-Resist Lack *CSAR* der Firma *Allresist* verwendet. Um beim Spin-Coating eine möglichst gleichmäßige Schichtdicke zu erreichen wurden unterschiedliche Kombinationen der relevanten Parameter varriiert. Dies resultierte in den Parameterwerten aus Tabelle 1, welche zuverlässig zu guten Ergebnissen führten.

Nach dem Belacken kamen die Proben bei 150 deg C für 60s auf eine Heizplatte (Soft Bake).

2.0.0.2. Lithographie

2.0.0.2.1. Dosis Um eine gute Dosis für CSAR zu finden, wurde ein Dose-Test von 40 bis 150 μ C/cm² durchgeführt. Dabei zeigte sich, dass ab einer Dosis von ca. 50 μ C/cm² kein Unterschied zwischen verschiedenen Dosen mehr zu erkennen ist.

Das Datenblatt empfiehlt 65 μ C/cm². Da die Schichtdicke am Rand der Proben zunimmt, und die Proben meist flächendeckend mit Bondpads versehen wurden, wurde eine Dosis von 80 μ C/cm² verwendet.

2.0.0.2.2. Entwickeln

- Schritt 1: 60s in Entwickler (AR 600-546).
- Schritt 2: 60s in Isopropanol schwenken.
- Schritt 3: Mit Isopropanol spülen.
- Schritt 4: Mit Stickstoff trocknen.

2.0.0.3. Bedampfen

- Schritt 1: 30s in Remover (AR 600-71, Raumtemperatur).
- Schritt 2: Lift-Off.
- Schritt 3: Mit Isopropanol spülen.
- Schritt 4: Mit Stickstoff trocknen.

2.0.0.4. Aufkleben Die Chips wurden mit *Kleber (?)* auf einen Chipträger geklebt. Zum Aushärten des Klebers, wurden sie anschließend für 45 Minuten bei 150 Grad Celsius auf eine Heizplatte gelegt.

Part I. Gatedurchbrüche

3. Messaufbau

Es wurden Gate-Durchbrüche durch einen Spannungssweep von 0 bis 100V, bzw. 0 bis 200V, provoziert. Hierfür wurden zwei unterschiedliche Messaufbauten verwendet: Ein Keysight B1500A Device Tester für Messungen bist 100V, und ein Keithley 2450 SourceMeter für Messungen bis 200V.

3.1. Keysight B1500A (100V)

Spannungssweeps bis 100V wurden an einem Keysight B1500A durchgeführt. Hierfür wurde die Spannung über SMU1-Force an Kontakt 12 der Proben gelegt, während die zu testenden Bonds auf Masse gelegt wurden.

Am Keysight B1500A nicht möglich, Spannungen von über 100V anzulegen.

Figure 2: Messaufbau am Keysight B1500A.

3.2. Keithley Sourcemeter 2450 (200V)

Für Messungen bis 200 Volt wurde ein Keithley 2450 SourceMeter verwendet. Dieses erlaubt es direkt am Gerät einen Spannungssweep bis 200 Volt zu erstellen. Schließt man das Keithley 2450 über Ethernet an das LAN Netzwerk der Uni an, kann man das Gerät über ein Webinterface fernsteuern. Hierfür muss die IP-Adresse des Keithleys abgelesen werden ($HOME \rightarrow COMMUNICATION \rightarrow LAN$). Dieses Webinterface ist relativ rudimentär, erlaubt es aber die Messdaten direkt aus dem Buffer zu speichern.

Figure 3: Messaufbau am Keithley 2450. (Bild austauschen. Falsch verkabelt...)

Für die Messungen der Kennlinien wurde die Spannung an Kontakt 12 der Chipträger angelegt. Die Bonds wurden über einen ESD-Stecker an der Netzsteckdose auf Masse gelegt.

4. Screening Experiment

4.1. Versuchsplanung

Um festzustellen, welche Parameter am Gold-Bonder vermehrt zu Gate-Durchbrüchen führen, wurde zunächst ein Screening Experiment durchgeführt. Hierbei wurden die folgenden Faktoren im Rahmen eines Teilfaktorplans mit Auflösung III variiert:

- Ultraschallleistung
- Bondzeit
- Bondkraft
- Temperatur

ultrasound	time	force	gold	chrome	temperature
280	180	180	40	2	150
280	180	280	40	10	100
280	280	280	160	10	150
280	280	180	160	2	100
230	230	230	100	6	125
180	280	280	40	2	150
180	180	180	160	10	150
180	280	180	40	10	100
180	180	280	160	2	100

Table 2: Paramterwerte des Screening Experiments.

- Schichtdicke: Gold
- Schichtdicke: Chrom

Die verwendeten Parameterwerte und gemessenen Levelkombinationen, können Tabelle 2 entnommen werden. Diese orientierten sich an den empfohlenen Werten des Herstellers (siehe Abbildung 4).

Figure 4: Empfohlene Werte aus dem Handbuch des tpt HB-10 Bonders für Golddraht.

Aufgrund der Ergebnisse meiner Bachelorarbeit wurde vermutet, dass vor Allem die Ultraschallleis-

tung und Bondzeit einen wesentlichen Einfluss auf die Wahrscheinlichkeit eines Gate-Durchbruchs haben.

4.2. Durchführung

Es wurden pro Levelkombination der Schichtdicke von Gold und Chrom jeweils zwei Proben mit Bondpads hergestellt (siehe Abbildung 5). Diese wurden anschließend anhand des Versuchsplans mit Bonds versehen, wobei darauf geachtet wurde, jedes Bondpad nur einmal zu verwenden.

Mit dem Keysight B1500A wurde an jedem Bond einzeln ein Spannungssweep von 0 bis 100 Volt angelegt. Nach jeder Messung wurde der gemessene Bond mikroskopisch begutachtet. Hierbei hat sich gezeigt, dass es teilweise zu Gate-Durchbrüchen kam, die rein an den Messdaten nicht erkannt worden wären.

Figure 5: Verwendete Probengeometrie zum Messen von Gate-Durchbrüchen.

Da es sich mit Gate-Durchbruch Ja/Nein, um eine kategorische Antwort handelt, wurde der

Versuchsplan fünfmal wiederholt. Dadurch konnte in der Auswertung die relative Anzahl an Gate-Durchbrüchen untersucht werden.

4.3. Auswertung

Von insgesamt 55 Messungen führten 11 Messungen zu einem Gate-Durchbruch. Die Kennlinien der Gate-Durchbrüche können Abbildung 6 entnommen werden.

Die Kennlinien zeigen, dass Gate-Durchbrüche ohne eine optische Kontrolle leicht hätten übersehen können, da ein Gate-Durchbruch allein an den Daten teils nicht zu erkennen ist (vergleiche Messung 46).

Figure 6: Kennlinien aller gemessenen Gate-Durchbrüche.

Abbildung 7 zeigt die Effekt-Plots der untersuchten Einflussgrößen. In diesem wurden die Mittelwerte der Messungen der einzelnen Level gebildet. Die Steigung des Plots signalisiert die größe des Effekts einer Einflussgröße.

Figure 7: Effektplot der untersuchten Faktoren. Die Steigung ist ein Maß für die Stärke eines Effekts.

4.3.1. Regression

Eine Grundvorraussetzung der linearen Regression ist eine Normalverteilung der Zielgröße. Da die Zielgröße "Gate-Durchbruch = Ja/Nein" kategorisch ist wurde diese über den Mittelwert aus 5 Messungen in eine Wahrscheinlichkeit umgerechnet. Dadurch folgen die Daten allerdings nun einer Binomialverteilung. Dies wurde über eine Arcsin-Transformation korrigiert.

$$P(\text{Gate-Durchbruch})_{trans} = \arcsin\left(\sqrt{P(\text{Gate-Durchbruch})}\right)$$

Somit ist eine Normalverteilung der Messergebnisse gegeben (Shapiro-Wilk: p = 0.172).

Es wurde eine lineare Regression mit allen untersuchten Einflussgrößen verwendet, um die Daten zu nähern. Tabelle 3 zeigt das Ergebnis dieser Regression.

Keiner der Faktoren besitzt statistische Signifikanz (p < 0.05), daher wurde die Regression schrittweise um nicht signifikante Terme reduziert.

Table 3: Regressionstabelle.

term	estimate	std.error	statistic	p.value
(Intercept)	0.395	0.051	7.679	0.001
ultrasound	0.282	0.055	5.165	0.004
force	0.111	0.055	2.029	0.098
gold	0.166	0.055	3.042	0.029

Table 4: Statistiken der Regession.

r.squared	adj.r.squared	statistic	p.value	df
0.889	0.822	13.35	0.008	3

Die finale Regression beinhaltet die Faktoren Ultraschallleistung, Bondkraft und Golddicke (siehe Tabelle **??**)und bildet die Daten gut ab ($R_{adj.}^2 = 88.9\%$, p = 0.008, vgl. Tabelle 4). Dabei weisen Ultraschallleistung und die Dicke der Goldschicht einen statistisch signifikanten Effekt auf (p < 0.05). Die Bondkraft besitzt keinen statistisch signifikanten Effekt, verbessert allerdings den Fit der Regression.

Die finale Regressions-Funktion lautet:

$$P(\text{Gate-Durchbruch})_{\text{trans.}} = 0.395 + 0.282(\text{US}) + 0.111(\text{F}) + 0.166(\text{AU})$$
(1)

Figure 8: Contour-Plot der Regressionsfunktion.

5. Test der optimalen Parameterwerte

Das Screening Experiment hat gezeigt, dass die Reduktion der Bondparameter zu einer geringeren Wahrscheinlichkeit eines Gatedurchbruchs führt. Die Ultraschallleistung zeigte dabei den größten Effekt. Dies stimmt mit den Messungen am Al-Bonder überein, wobei die Parameterwerte am Goldbonder generell niedriger gewählt werden können.

Um die Messergebnisse abschließend zu prüfen, wurden Proben mit "falschen" Hallbars versehen (siehe Abbildung 9): Acht Bondpads wurden mittels Leiterbahnen kurzgeschlossen. Dadurch spiegeln

die Messungen eine reale Anwendung besser wieder, da alle Bonds eine Spannung von bis zu 200 Volt ohne Gatedurchbruch überstehen müssen. Kommt es an einem Bond zu einem Durchschlag der Backgatespannung, ist die gesamte Probe zerstört.

Figure 9: Lithographie-Muster zum Testen der optimalen Parameterwerte.

An den Proben wurden mit einem Keithley 2450 SourceMeter jeweils drei Spannungssweeps von 0 bis 200 Volt durchgeführt. Zusätzlich wurden Blindmessungen aufgenommen, um eventuelle Störungen im Messaufbau von tatsächlichen Gatedurchbrüchen unterscheiden zu können.

Es wurden zwei Typen von Bondpads hergestellt und untersucht:

- Cr/Au: Bondpads aus 40 nm Gold auf 2 nm Chrom.
- Cr/Pd/Au : Bondpads aus 40 nm Gold auf 15 nm Palladium auf 10 nm Chrom.

Die verwendeten Parameterwerte waren:

US	Т	F	AU	PD	CR	Temp
110	150	200	40 nm	0 nm	2 nm	100 °C
110	150	200	40 nm	15 nm	10 nm	100 °C
130	150	200	40 nm	0 nm	2 nm	100 °C
130	150	200	40 nm	15 nm	10 nm	100 °C

5.1. Cr/Au

- ??.
- Leckstrom.
- Gatedurchbruch.

Kennlinie

Figure 10: Kennlinien der Messungen an 8 Bonds gleichzeitig. Die Kennlinie der ersten Messung an Probe 1 weißt einen Gate-Durchbruch auf.

5.2. Cr/Pd/Au

- Proben sind fertig.
- Bisher keine Messung möglich.
- Wo ist der Messkastern???

6. Fazit

Abschließend kann festgehalten werden, dass die Erkenntnisse meiner Bachelorarbeit auch für den Gold-Bonder gelten. So steigt die Wahrscheinlichkeit eines Gate-Durchbruchs mit einer Erhöhung der Bondparamter. Dabei hat die Ultraschallleistung den größten Effekt.

Die Schichtdicke von Chrom hat keinen großen Einfluss auf die Wahrscheinlichkeit eines Gate-Durchbruchs. Die Schichtdicke von Gold dagegen, weißt einen messbaren Effekt auf: Durch eine Erhöhung der Schichtdicke, steigt die Wahrscheinlichkeit eines Gate-Durchbruchs. Dieses Ergebnis stimmt zwar mit meiner Bachelorarbeit überein, kann allerdings nicht erklärt werden.

Meine abschließende Empfehlung ist daher: Um einen Gate-Durchbruch möglichst zu vermeiden, sollte der Gold-Bonder verwendet werden. Dieser bietet im Vergleich zum Aluminium-Bonder den Vorteil, dass an ihm mit geringeren Paramterwerten (vor Allem geringerer Ultraschallleistung) gebondet werden kann.

Zusätzlich deuten bisher alle Messungen darauf hin, dass eine Erhöhung der Schichtdicke der Bondpads die Wahrscheinlichkeit eines Gatedurchbruchs nicht reduziert. Im Gegenteil scheinen dickere Goldschichten die Wahrscheinlichkeit zu erhöhen. Dies steht nicht im Einklang mit der Literatur und kann derzeit nicht eindeutig erklärt werden. Möglicherweise zeigt sich ein positiver Effekt erst bei drastisch erhöhten Schichtdicken (Gold > 400 nm). Dies ist aus kostengründen allerdings nicht relevant und wurde daher nicht weiter verfolgt.

Benutzt den Goldbonder!

Part II. Pull-Test

7. Pulltester

Mit einem Pull-Test kann die Qualität eines Bonds mechanisch geprüft werden. Hierfür wird ein feiner Haken unter den Loop eines Bonds geführt und langsam angehoben. Die Zugkraft, die auf den Draht wirkt, wird dabei gemessen.

Es wird zwischen zwei Arten des Pull-Tests unterschieden: Beim nicht-destruktiven Pull-Test wird die Zugkraft bis auf einen Maximalwert erhöht. Erhöht man die Zugkraft dagegen, bis entweder der erste oder zweite Bond vom Chip reißt, handelt es sich um einen destruktiven Pull-Test.

Der hier verwendete Pull-Tester wurde von Michael Weigl in Rücksprache mit mir entworfen und gebaut. Maßgebendes Vorbild war hierbei der Pull-Tester der Firma *tpt*.

Figure 11: Federwaage des Pulltesters.

Figure 12: Federwaage des Pulltesters.

Figure 13: Federwaage des Pulltesters.

Einen geeigneten Haken zu finden, der fein genug ist, um unter den Loop eines Bonds zu passen, stellte sich als schwierig heraus. Die beste Lösung die wir gefunden haben, ist die Verwendung einer feinen Messspitze des Spitzenmessplatzes. Diese habe ich vorsichtig zurechtgebogen, um einen Haken zu formen (siehe Abbildung 14).

Figure 14: Haken des Pulltesters: Eine vorsichtig vergebogene Messspitze.

8. Optimierung der Haltekraft

Es soll die maximale Haltekraft eines Bonds durch Pull-Tests und Methoden der statistischen Versuchsplanung optimiert werden.

8.1. Versuchsplanung

Da nach optimale Parameterwerte gesucht werden, ist ein vollständiger Versuchsplan mit zwei Leveln pro Faktor nicht mehr ausreichend. Um mittels eines quadratischen Modells optimale Parameterwerte zu finden, werden mindestens drei Level pro Faktor benötigt. Der Arbeitsaufwand kann dabei durch ein *Central Composite Design* (CCD) bzw. ein *Box-Behnken-Design* (BBD) minimiert werden.

Ich habe mich hier für ein BBD entschieden, da dieses keine extreme Levelkombinationen (alles hoch/alles niedrig) vermeidet. Diese Levelkombinationen sind weniger interessant, da bekannt ist, dass diese nur selten zu brauchbaren Bonds führen. Zudem wird dass Bondtool geschont, da keine exzessiven Parameterwerte am Bonder verwendet werden müssen.

Die Parameter von Interesse sind:

- Ultraschallleistung
- Bondzeit
- Bondkraft
- Schichtdicke: Gold
- Schichtdicke: Chrom
- Tempereratur des Probenhalters

8.2. Durchführung

Es wurden 9x2 Proben flächendeckend mit Cr/Au bedampft und auf Chipträger geklebt. Die Chips wurden anschließend anhand des Versuchsplans mit Bonds versehen, deren Qualität durch einen destruktiven Pull-Test getestet wurden.

8.3. Auswertung

Abbildung 15 zeigt die gemessene maximale Zugkraft gegen die Versuchsreihenfolge aufgetragen. Die horizontalen Linien signalisieren den Mittelwert der Messungen mit einer Einstellung des Bondtools. Dies zeigt, dass das Justieren des Bondtools einen großen Einfluss auf die Qualität der Bonds hatte. Besonders nach der ersten Justierung kam es zu einem starken Abfall der mittleren Haltekraft.

Figure 15: Plot der Versuchsreihenfolge. Im Idealfall sollte kein Muster zu erkennen sein, allerdings hat eine Justierung des Bondtools eindeutig einen Einfluss auf die Qualität der Bonds.

8.3.1. Regression

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	devianc
0.4841147	-0.1724666	14.38831	0.7373263	0.7787796	28	-186.9131	433.8262	491.781	4554.51

	1			
term	estimate	std.error	statistic	p.value
(Intercept)	284.6922482	208.4356867	1.3658518	0.1857874
run.order	-0.1682052	0.1917759	-0.8770924	0.3899141
ultrasound	0.4653871	0.8695193	0.5352234	0.5978646
time	-1.0539409	1.0649803	-0.9896342	0.3331133
force	-0.2723444	0.9361758	-0.2909116	0.7738438
temperature	-0.3382991	0.8138080	-0.4156990	0.6816571
chrome	-15.4049038	9.2596635	-1.6636570	0.1103623
gold	-2.0711556	1.3016319	-1.5911992	0.1258329
I(ultrasound^2)	-0.0003382	0.0020164	-0.1677157	0.8683391
I(time^2)	0.0009773	0.0021395	0.4568122	0.6522845
I(force^2)	-0.0004797	0.0019429	-0.2469206	0.8072593
I(temperature^2)	-0.0000505	0.0020149	-0.0250719	0.9802236
I(chrome^2)	0.2466827	0.3113169	0.7923846	0.4365982
I(gold^2)	0.0107551	0.0055079	1.9526785	0.0636965
ultrasound:time	-0.0011470	0.0020713	-0.5537614	0.5853271
ultrasound:force	-0.0007290	0.0020887	-0.3490110	0.7303993
ultrasound:temperature	0.0002644	0.0022572	0.1171244	0.9078242
ultrasound:chrome	0.0038486	0.0264323	0.1456004	0.8855627
ultrasound:gold	-0.0011695	0.0025573	-0.4573343	0.6519150
time:force	0.0018413	0.0020564	0.8953695	0.3802819
time:temperature	-0.0005225	0.0019816	-0.2636628	0.7944937
time:chrome	0.0446069	0.0182235	2.4477611	0.0228182
time:gold	0.0032088	0.0034922	0.9188549	0.3681366
force:temperature	0.0008188	0.0014586	0.5613684	0.5802204
force:chrome	0.0168857	0.0259521	0.6506498	0.5220105
force:gold	0.0000000	0.0033078	0.0000142	0.9999888
temperature:chrome	0.0055941	0.0255715	0.2187619	0.8288522
temperature:gold	0.0024249	0.0034635	0.7001360	0.4911806
chrome:gold	-0.0188015	0.0426192	-0.4411523	0.6634078

Konstantin Schneider

9. Fazit

Die Bondparameter konnten im durchgeführten Experiment nur einen kleinen Effekt im Vergleich zum Bondtool zeigen. Hierdurch wurden die Messergebnisse zu stark verfälscht, als dass konkrete Aussagen zum Einfluss der einzelnen Parameter getroffen werden könnten. Allerdings zeigen die Messungen eindeutig die Wichtigkeit eines ordentlich justierten und unbeschädigten Bondtools. Ist dies nicht gegeben, sinkt die erreichbare Qualität der Bonds drastisch. Dies ist unabhängig der gewählten Paramterwerte der Fall.

Um die maximal erreichbare Haltekraft am Goldbonder mit 25 µm Draht zu messen, könnten Pull-Tests mit einem neuen, unbenutzten Bondtool wiederholt werden. Um den Versuchsaufwand zu reduzieren, könnte hierbei eine feste Temperatur von 100 °C verwendet werden.

Abschließend kann festgehalten werden: Der Goldbonder bondet zuverlässiger als der Aluminium-Bonder. Solange die Bondparameter im Bereich der Herstellerempfehlung liegen (US = 160, T = 200, F = 250) halten die Bonds zuverlässig. Allerdings ist der Goldbonder sehr empfindlich in Bezug auf die Einstellung und den Zustand des Bondtools: Bei schlechter Justage oder Beschädigung des Bondtools halten die Bonds zwar noch, jedoch nur sehr schwach.

Um die Bondtools zu schonen sollten exzessive Ultraschallleistungen vermieden werden.

US > 250 ist zu hoch, und beschädigt Bondtool und Backgate! Es soll gebondet werden, nicht gestanzt.